Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced with the increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene–Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations and climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., drier or wetter, greater frequency, and/or intensity of extreme events). Central California (paleolatitude ∼ 42° N), roughly at the boundary between dry subtropical highs and mid-latitude low-pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during the PETM. Our findings, based on multi-proxy evidence within the context of model outputs, suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along central coastal California during the PETM.more » « less
-
Abstract. The effects of anthropogenic warming on the hydroclimate of California are becoming more pronounced, with increased frequency of multi-year droughts and flooding. As a past analog for the future, the Paleocene-Eocene Thermal Maximum (PETM) is a unique natural experiment for assessing global and regional hydroclimate sensitivity to greenhouse gas warming. Globally, extensive evidence (i.e., observations, climate models with high pCO2) demonstrates hydrological intensification with significant variability from region to region (i.e., dryer or wetter, or greater frequency and/or intensity of extreme events). Central California (paleolatitude ~42° N), roughly at the boundary between dry subtropical highs and mid-latitude low pressure systems, would have been particularly susceptible to shifts in atmospheric circulation and precipitation patterns/intensity. Here, we present new observations and climate model output on regional/local hydroclimate responses in central California during PETM. Our findings based on multi-proxy evidence within the context of model output suggest a transition to an overall drier climate punctuated by increased precipitation during summer months along the central coastal California during the PETM.more » « less
-
Mackelprang, Rachel (Ed.)Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13 C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.more » « less
-
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.more » « less
-
Abstract Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.more » « less
-
Abstract Forester and logger responses to the invasive emerald ash borer (EAB) could substantially affect regions across the United States. We analyzed forester and logger responses to EAB in Massachusetts and Vermont, exploring characteristics associated with purposeful targeting of substantial ash properties; managing forests differently because of EAB; and regeneration goals. One-third of respondents increased timber sales on ash properties, motivated by ecological, not economic, impacts of EAB. Nearly 60% said EAB changed their management activity in stands with ash; changes influenced by the ecological impact of EAB and not economic factors. Those influenced by EAB’s ecological impact to choose properties with substantial ash were more likely to have increased harvest area size, sawtimber removal, and harvest intensity. Loggers were more likely than foresters to remove small-diameter ash and low-grade trees. Both rated regenerating economically valuable species well adapted to the site as their highest essential priority.more » « less
-
As part of ongoing work on the Flora of the Southeastern United States (Weakley & Southeastern Flora Team 2023) and related projects, as well as for general floristic, conservation, and scientific work in eastern North America, it is essential to document taxonomic and nomenclatural changes and significant distribution records. Here, we propose six new species of graminoids (two Rhynchospora, three Dichanthelium, and one Anatherum)—five from fire-maintained pine savannas and embedded wetlands of the southeastern Coastal Plain and one from the floristically and ecologically related fire-maintained pine savannas of North Andros Island in The Bahamas. We provide rationale and documentation for the “taxonomic resurrection” of Vaccinium ashei, an economically important member of Vaccinium sect. Cyanococcus, based on morphology, estimation of ploidy level with flow cytometry, and phylogenomic analysis based on high-throughput DNA sequencing. We make four new combinations in Convolvulus to accommodate the inclusion of Calystegia in Convolvulus to resolve paraphyly. We also make six new combinations necessary to recognize sect. Leptopogon of Andropogon at generic rank, as Anatherum, based on the phylogenetic work of other researchers and the previously incomplete transfer of recognized species to Anatherum, providing the needed names to recognize this group of species in genus Anatherum in North American floristic treatments. We document the surprising discovery of Carex lutea, previously believed to be endemic to two counties in eastern North Carolina, in two counties in the panhandle of Florida, and a county in eastern South Carolina—discoveries aided by iNaturalist and Facebook. We document new states as being within the distribution ranges of additional species: Quercus similis (Florida), Juncus brachycephalus (Arkansas and Missouri), Rhexia mariana var. mariana (Ohio), Asarum acuminatum and Elionurus tripsacoides (Alabama), and Mecardonia procumbens (Georgia). Other important distributional records, many representing rediscoveries of conservationally significant, extant populations of plants previously considered of only historical occurrence in a state, are also reported: Alabama (Arnica acaulis, Asclepias connivens, Berberis canadensis, Bulbostylis warei, Ctenodon viscidulus, Parnassia grandifolia, and Pinguicula pumila) and Georgia and Florida (Lobelia boykinii).more » « less
An official website of the United States government
